Comparing fractions with the same denominator

When comparing parts of the unit that are the same size, the fraction with the largest numerator is the greater fraction.

Ex)
$$\frac{3}{10}$$
 < $\frac{5}{10}$ I know this because 3 < 5.

Ex) Katherine ate $\frac{2}{6}$ of a pizza. Patrick ate $\frac{4}{6}$ of a pizza. Who ate more?

$$\frac{2}{6}$$
 $<$ $\frac{4}{6}$

Patrick ate more pizza. I know this because 2 < 4.

Comparing fractions with the same numerator

When comparing fractions with different sized parts, the fraction with the smallest denominator is the greater fraction.

Ex)
$$\frac{2}{8} > \frac{2}{10}$$
 I know this because $\frac{1}{8} > \frac{1}{10}$

Ex) Julianne ate 3 slices of a pizza cut into 6 pieces. Sarah ate 3 slices of a pizza cut into 8 pieces. Who ate more?

$$\frac{3}{6} > \frac{3}{8}$$
 Julianne ate more pizza. I know this because $\frac{1}{6} > \frac{1}{8}$

Transitive Strategy: Using $\frac{1}{2}$ as a benchmark

When comparing fractions and the denominators are even, compare the fractions to the unit fraction $\frac{1}{2}$.

Ex)
$$\frac{3}{8} < \frac{4}{6}$$

Ex) $\frac{3}{6}$ I know this because $\frac{1}{2} = \frac{4}{8}$ and $\frac{1}{2} = \frac{3}{6}$.

So if
$$\frac{3}{8} < \frac{4}{8}$$
 and $\frac{4}{6} > \frac{3}{6}$ then $\frac{3}{8} < \frac{4}{6}$

Ex) Katie ate $\frac{4}{10}$ of a pizza and Mal ate $\frac{3}{4}$ of a pizza. Who ate more?

$$\frac{4}{10} < \frac{3}{4}$$

I know this because $\frac{1}{2} = \frac{5}{10}$ and $\frac{1}{2} = \frac{2}{4}$. So if $\frac{5}{10} > \frac{4}{10}$ and

$$\frac{2}{4}$$
 then $\frac{4}{10}$ $\frac{3}{4}$. Therefore, Mal ate more pizza.

Residual Strategy: Fill the whole

I know this because the missing $\frac{1}{6}$ part is smaller than the missing $\frac{1}{8}$ part. So if $\frac{7}{8}$ is closer to 1 whole, then $\frac{5}{6} < \frac{7}{8}$.

Ex) Kelly ate $\frac{3}{4}$ of a pizza and Greg ate $\frac{2}{3}$ of a pizza. Who ate more?

$$\frac{3}{4} > \frac{2}{3}$$

I know this because the missing $\frac{1}{4}$ part is smaller than the missing $\frac{1}{3}$ part. So if $\frac{3}{4}$ is closer to 1 whole, then $\frac{3}{4} > \frac{2}{3}$.

Therefore, Kelly ate more pizza than Greg.

Comparing fractions with related denominators

Change one denominator, and then compare the new fractions.

Ex)
$$\frac{6}{5} < \frac{13}{10}$$
 I know $\frac{6}{5} = \frac{12}{10}$. So if $\frac{12}{10} < \frac{13}{10}$, then $\frac{6}{5} < \frac{13}{10}$.

Ex) Kyle ate $\frac{4}{6}$ of a pizza. Jess ate $\frac{7}{12}$ of a pizza. Who ate more?

$$\frac{4}{6}$$
 > $\frac{7}{12}$ I know $\frac{4}{6} = \frac{8}{12}$. So if $\frac{8}{12}$ > $\frac{7}{12}$, then $\frac{4}{6}$ > $\frac{7}{12}$.

Therefore, Kyle ate more pizza than Jess.

Comparing non related fractions

Find the Least Common Multiple and change both denominators, then compare the new fractions.

Ex)
$$\frac{4}{7} < \frac{2}{3}$$

Least Common Multiple:

7 14 21 28

3 6 9 12 15 18 21 24

I know
$$\frac{4}{7} = \frac{12}{21}$$
 and $\frac{2}{3} = \frac{14}{21}$.

So if
$$\frac{12}{21} < \frac{14}{21}$$
, then $\frac{4}{7} < \frac{2}{3}$.

Ex) Mary ate $\frac{5}{9}$ of a pizza. Alex ate $\frac{3}{4}$ of a pizza. Who ate more?

$$\frac{5}{9} < \frac{3}{4}$$

I know
$$\frac{5}{9} = \frac{20}{36}$$
 and $\frac{3}{4} = \frac{27}{36}$. So if $\frac{20}{36} < \frac{27}{36}$

then $\frac{5}{6} < \frac{3}{4}$. Therefore, Alex at more than Mary.

Least Common Multiple:

9 18 27 36 45 54 63

12 16 20 24 28 32 36